9 research outputs found

    Chronic fluoxetine treatment increases daytime melatonin synthesis in the rodent

    Get PDF
    Circadian rhythm disturbances can occur as part of the clinical symptoms of major depressive disorder and have been found to resolve with antidepressant therapy. The pineal gland is relevant to circadian rhythms as it secretes the hormone melatonin following activation of the cyclic adenosine monophosphate (cAMP) signaling cascade and of arylalkylamine N-acetyltransferase (AA-NAT), the rate-limiting enzyme for its synthesis. Cyclic AMP is synthesized by adenylate cyclases (AC) and degraded by phosphodiesterases (PDEs). Little is known about the contribution of the PDE system to antidepressant-induced alterations in pineal cAMP signaling and melatonin synthesis. In the present study we used enzyme immunoassay to measure plasma melatonin levels and pineal cAMP levels and as well as quantitative real-time polymerase chain reaction to measure pineal expression of PDE, AC, and AA-NAT genes in rats chronically treated with the prototypic antidepressant fluoxetine. We found elevated melatonin synthesis with increased pineal AA-NAT gene expression and daytime plasma melatonin levels and downregulated cAMP signaling with increased PDE and unchanged AC pineal gene expression, and decreased content of pineal cAMP. We conclude that chronic fluoxetine treatment increases daytime plasma melatonin and pineal AA-NAT gene expression despite downregulated pineal cAMP signaling in the rodent

    cGMP Signaling, Phosphodiesterases and Major Depressive Disorder

    Get PDF
    Deficits in neuroplasticity are hypothesized to underlie the pathophysiology of major depressive disorder (MDD): the effectiveness of antidepressants is thought to be related to the normalization of disrupted synaptic transmission and neurogenesis. The cyclic adenosine monophosphate (cAMP) signaling cascade has received considerable attention for its role in neuroplasticity and MDD. However components of a closely related pathway, the cyclic guanosine monophosphate (cGMP) have been studied with much lower intensity, even though this signaling transduction cascade is also expressed in the brain and the activity of this pathway has been implicated in learning and memory processes. Cyclic GMP acts as a second messenger; it amplifies signals received at postsynaptic receptors and activates downstream effector molecules resulting in gene expression changes and neuronal responses. Phosphodiesterase (PDE) enzymes degrade cGMP into 5’GMP and therefore they are involved in the regulation of intracellular levels of cGMP. Here we review a growing body of evidence suggesting that the cGMP signaling cascade warrants further investigation for its involvement in MDD and antidepressant action

    Chronic fluoxetine treatment increases daytime melatonin synthesis in the rodent

    No full text
    Circadian rhythm disturbances can occur as part of the clinical symptoms of major depressive disorder and have been found to resolve with antidepressant therapy. The pineal gland is relevant to circadian rhythms as it secretes the hormone melatonin following activation of the cyclic adenosine monophosphate (cAMP) signaling cascade and of arylalkylamine N-acetyltransferase (AA-NAT), the rate-limiting enzyme for its synthesis. Cyclic AMP is synthesized by adenylate cyclases (AC) and degraded by phosphodiesterases (PDEs). Little is known about the contribution of the PDE system to antidepressant-induced alterations in pineal cAMP signaling and melatonin synthesis. In the present study we used enzyme immunoassay to measure plasma melatonin levels and pineal cAMP levels and as well as quantitative real-time polymerase chain reaction to measure pineal expression of PDE, AC, and AA-NAT genes in rats chronically treated with the prototypic antidepressant fluoxetine. We found elevated melatonin synthesis with increased pineal AA-NAT gene expression and daytime plasma melatonin levels and downregulated cAMP signaling with increased PDE and unchanged AC pineal gene expression, and decreased content of pineal cAMP. We conclude that chronic fluoxetine treatment increases daytime plasma melatonin and pineal AA-NAT gene expression despite downregulated pineal cAMP signaling in the rodent

    Repeated antidepressant therapy increases cyclic GMP signaling in rat hippocampus

    No full text
    Cyclic adenosine monophosphpate (cAMP) signaling is thought to be involved in the pathophysiology of major depressive disorder and antidepressant action; however, relatively little is known about the possible role of cyclic guanosine monophosphate (cGMP

    Chronic imipramine downregulates cyclic AMP signaling in rat hippocampus

    No full text
    Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are synthesized by adenylate cyclase and guanylyl cyclase and degraded by phosphodiesterases. Antidepressant treatment action is hypothesized to occur through increased cAMP signaling; however, antidepressants are also reported to increase phosphodiesterase-4 expression. We addressed this paradox by systematically studying elements of intracellular signaling in the hippocampus of rats chronically treated with imipramine. We observed decreases in cAMP levels, which were congruent with our findings of increased gene expression for phosphodiesterases and decreased adenylate cyclase. Immunoassay results showed unchanged cGMP and brain-derived neurotrophic factor levels. We conclude that in contrast with the assumption of antidepressant-mediated increases in cAMP levels, long-term imipramine treatment may have the opposite effect, namely decreased hippocampal cAMP
    corecore